SECTION 1

Executive Summary
 ◦ Report Summary
 ◦ Indices Synopsis
 ◦ Why We Track
 ◦ Overview of KEYS Reliability Statistics
 ◦ Overview Comparison to Other Utilities

SECTION 2

Reliability Overview of Program and Indices
 ◦ Distribution Overview
 ◦ KEYS Program and Data Details

SECTION 3

KEYS Energy 2008 Reliability Data, Statistics and Tables
 ◦ Table of Contents
 ◦ Transmission & Distribution Comparison Charts
 ◦ Yearly Tracking Summary Spreadsheet
 ◦ Transmission Outage Summary Table

SECTION 4

Comparison of KEYS Statistics to Other Utilities
 ◦ Florida Municipals
 ◦ Florida IOU (investor owned)
 ◦ APPA Regional Comparison

SECTION 5

System Improvement Reliability plans
 ◦ Reasons for Past Improvements
 ◦ Future Reliability Improvement Plan

SECTION 6-APPENDICES

Florida PSC Rule 25-6.044 & Rule 25-6.0455 Florida Administrative Codes
KEYS Mission Statement

Provide exceptional customer service while supplying safe, reliable electric and utility services at the best value.

KEYS Utility Board and Staff are committed to maintaining and improving the reliability of our electrical network. One of the tools that we use to aid in the process is the tracking of outages in order to perform statistical comparison of “Past Performance” to other utilities

Example of “What We Track”

- Number of Customer Minutes Interrupted
- Total Number of Customers Served
- Total Number of Customer Interruptions
- Sum of All Customer Momentary Events
- Minutes of Interruption
- Total Number of Outages
- Cause of Outages
- Type of Outage - Overhead, Underground, Both Overhead & Underground

Typical reasons “Why We Track”

- Identify and Target Problem Areas/Zones
- Identify Faulty Construction Material and Trends
- Assist on Vegetation Management (TreeTrimming)
- Capital Improvement Planning
- Identify Areas More Susceptible to Weather
- Compare KEYS to Other Utilities
Some of the basic definitions that KEYS uses for its Distribution Reliability Measurement program include:

- **Service Interruption** (or outage) - The complete loss of voltage for at least one minute to a customer.

- **Service Interruption Duration** - The time interval, in minutes, between the time KEYS first becomes aware of a Service Interruption and the time of restoration of service to that retail customer.

- **Planned Service interruption** – A service interruption initiated by the utility to perform necessary scheduled activities, such as maintenance, infrastructure improvements, new construction due to customer growth. Customers are typically notified in advance of these events.

- **Momentary Interruption** – The complete loss of voltage for less than one minute. This does not include short duration phenomena causing waveform distortion.

There are several indices used in the electric utility industry to track and monitor distribution reliability. The KEYS Distribution Reliability program uses the **SAIDI, CAIDI, SAIFI, MAIFIe, and L-Bar**. An overview of each of these indices is presented below:

SAIDI stands for **System Average Interruption Duration Index**.

SAIDI is calculated by taking the sum of all customer interruption durations (in minutes) and dividing it by the total number of customers served.

SAIDI measures the average **duration** of interruptions for the average customer.

CAIDI stands for **Customer Average Interruption Duration Index**.

CAIDI is the average time required to restore service to the average customer per sustained interruption.

CAIDI measures the average **repair time** experienced by the average customer who experiences an interruption.

SAIFI stands for **System Average Interruption Frequency Index**.

SAIFI is calculated by taking the total number of customer interruptions and dividing it by the total number of customers served.

SAIFI measures the average **frequency** of interruptions for the average customer.
MAIFIe stands for Momentary Average Interruption Event Frequency Index.

MAIFIe is calculated by taking the total number of customer momentary interruption events and dividing it by the number of customers served.

A momentary event, for FMPA participants, is defined as an interruption that lasts less than one minute. All momentary interruptions associated with the same event are considered to be ONE momentary interruption event.

MAIFIe measures the average momentary interruption events per average customer.
Statistical Comparison

<table>
<thead>
<tr>
<th>TRANSMISSION AND DISTRIBUTION</th>
<th>Statistical data</th>
<th>Percent Changes</th>
<th>Other Utilities Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSMISSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-QUANTITY</td>
<td>12</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>-SAIDI (minutes)</td>
<td>165.5</td>
<td>108.1</td>
<td>318.1</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-QUANTITY</td>
<td>70</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>-SAIDI (minutes)</td>
<td>84.6</td>
<td>49.0</td>
<td>56.2</td>
</tr>
<tr>
<td>-MAIFI</td>
<td>4.2</td>
<td>5.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- **Reasons for Past Five Year Reliability Improvements:**
 - **Transmission System**
 - Replaced 69kv dead-end bells with polymer insulators
 - Utilized Synchronous Condenser for system stability
 - New parallel 138kV Line 9 (Big Coppitt - Stock Island)
 - Replaced old relays on T-line at US1, Big Pine, and Big Coppitt
 - Repaired 35 pole Foundation problems in FKEC
 - Additional 10MVAR capacitor bank at Big Coppitt Sub.
 - Replace 138kV Gang Switch at Big Pine Sub & Big Coppitt Sub
 - Replaced 30 yr old 69 kV oil breakers
 - Replace aging shield wire FKEC
 - Replace arrestors at Tavernier Sub
 - Replace insulators north of Tavernier
 - Replace aging 138kV potential transformer
 - **Distribution System**
 - Added second transformer at KWD Substation
 - Distribution protective relays (replaced with new Microprocessor type)
 - Added new Cudjoe Key Substation
 - Added additional feeder at Big Coppitt Substation
 - Tree Trimming Program
 - Lightning Arrestor’s Program
 - Infrared survey of lines and field correcting/fixing
 - Installation of 4 field re-closers
 - Installed more Capacitor Banks to improve voltage quality
 - Open wire/Back Easement Removal Program
 - Reduced number of overloaded transformers
 - Installed transformer secondary/primary arrestors
 - Replacement at Kennedy Drive Sub bus 13.8kV gear
 - New 13.8kV substation breaker (replace 30 yrs. old ones)

- **Reliability Goals/Plans for year 2008 - 2011**
Transmission System
- Foundation repairs to over water poles
- Replace 69kV gang switches (Completed)
- Replace down guy insulator rods
- Replace corroded static brackets and wire
- Repair spalling at pole tops
- Replace 138kV breakers (Completed)
- Fiber inter-connection (Close to completion)
- 69kV Relay upgrade at Kennedy Dr Sub & S.I Plant (Completed)
- Replace Lightning Arresters
- Investigate Transmission Auto Reclosing
- Continue 69kv dead-end insulator replacement

Distribution System
- Replace four 69kv breakers at Stock Island Plant
- Pole Replacement Program (Storm Harding Program)
- New substation at Stock Island
- Replace old substation feeder cables
- Replace transformers at Kennedy Drive Sub & US1 Sub
- Additional feeders
- OMS (Outage Management System) (Completed)
Tracking and measuring the reliability of KEYS’ Transmission & Distribution electric system is an important means for KEYS to gauge its performance, evaluate procedures, and ensure a high level of service to our customers. KEYS’ monitors reliability by, tracking the number of power outages, cause of the outages, location of the outage, number of customers impacted and the length of the outages.

KEYS uses the data to identify potential areas for improvement, such as enhanced tree trimming and vegetation management call out procedures for line crews responding to outages, and possible changes to equipment/material. The data is also very useful for KEYS to determine 1) where funds should be spent and 2) when funds are needed to improve reliability, depending on the type of outages experienced.

This information can also be used to calculate several reliability indices used in the electric industry to evaluate reliability performance. These indices help to standardize the data and allow KEYS utility to compare its reliability performance to other utilities.

In Florida, Investor Owned Utilities (IOUs) are required to submit an annual Distribution Service Reliability Report to the Florida Public Service Commission (PSC) as required under Rule 25-6.0455. (A copy of Rule 25-6.0455 FAC is included in Appendix A.) The PSC uses this information to track service levels and identify any trends or areas in need of attention.

In 2007, the PSC issued a data request to the municipal utilities in the state to submit similar data for the first time. KEYS were able to compile data of such request, as we have had an extensive well documented tracking mechanism for years.

In addition, FMPA has been collecting and compiling distribution reliability measurement data from participating municipal electric utilities since 2003. KEYS along with other participating utilities submit distribution reliability data and receive a group report each month. Participants are able to compare their utility’s performance each month with other participating municipal utilities. The FMPA data enables KEYS to compare and benchmark to the other Florida utilities.

KEYS collect outage data using our own outage tracking and management systems. The data is comprised on the following.

- Number of Customer Minutes Interrupted
- Total Number of Customers Served
- Total Number of Customer Interruptions
- Sum of All Customer Momentary Events
- Minutes of Interruption
- Total Number of Outages
- Cause of Outages
- Type of Outage - Overhead, Underground, Both Overhead & Underground

From this data, the following reliability indices are calculated – SAIDI, CAIDI, SAIFI, MAIFI, L-Bar.
In an effort to mirror the data from the Florida Investor Owned (IOUs) as closely as possible, the participating KEYS and the other municipal utilities report their data using the same definitions and guidelines required by the Public Service Commission. Appendix A provides a copy of Chapter 25-6.0455 FAC, which includes the definitions used by the IOUs for the collection and submittal of the distribution reliability data.

Service Interruption (or outage) - The complete loss of voltage for at least one minute to a retail customer.

Service Interruption Duration - The time interval, in minutes, between the time a utility first becomes aware of a Service Interruption and the time of restoration of service to that retail customer.

Planned Service Interruption – A service interruption initiated by the utility to perform necessary scheduled activities, such as maintenance, infrastructure improvements, new construction due to customer growth. Customers are typically notified in advance of these events.

Momentary Interruption – Complete loss of voltage for less than one minute. This does not include short duration phenomena causing waveform distortion.

In addition to the definitions, the participating KEYS along with the Florida Municipal Utilities have also adopted the exclusions provided in Chapter 25-6.0455 FAC. As provided in this section, IOUs may exclude from their Annual Distribution Service Reliability Report outage events directly caused by one or more of the following:

- Planned interruptions
- A storm named by the National Hurricane Center
- A tornado recorded by the National Weather Service
- A planned load management event
- An electric generation or transmission event
- An extreme weather or fire event causing activation of the county Emergency Operation Center
In 2006, the PSC revised the rules to require IOUs to submit both an “actual” Annual Distribution Service Reliability Report which lists all outages experienced by the utility as well as an “adjusted” report, which excludes outages from those events noted above.

For 2008, there were only two named storms by the National Hurricane Center that could have resulted in excluded distribution reliability data. After a damage assessment was performed by a KEYS damage assessment team, neither of these storms had a significant impact to KEYS’ service territory. Hurricane Ike produced some rough seas but that was about it. Those two storms were:

- Tropical Storm Fay – Sept, 9th 2008
- Hurricane Ike – August 18th 2008

There are several indices used in the electric utility industry to track and monitor distribution reliability. The KEYS Distribution Reliability program uses the **SAIDI, CAIDI, SAIFI, MAIFI, and L-Bar**. An overview of each of these indices is presented below:

SAIDI stands for **System Average Interruption Duration Index**.

SAIDI is calculated by taking the sum of all customer interruption durations (in minutes) and dividing it by the total number of customers served.

$$\text{SAIDI} = \frac{\text{Sum of all Customer Minutes Interrupted (CMI)}}{\text{Total number of Customers Served (C)}}$$

The unit of SAIDI is time (minutes). SAIDI can be stated: “On average, customers on the distribution system were out of service for _____ minutes.” For example, if Utility X has 10,000 CMI annually, and 1,000 customers then the SAIDI for that utility is 10 minutes per year (for the average customer).

SAIDI measures the average *duration* of interruptions for the average customer.
CAIDI stands for **Customer Average Interruption Duration Index**.

CAIDI is the average time required to restore service to the average customer per sustained interruption. It is calculated by dividing the sum of all customer minutes interrupted by the total number of customer interruptions.

\[
\text{CAIDI} = \frac{\text{Sum of all Customer Minutes Interrupted (CMI)}}{\text{Total number of customer interruptions (CI)}}
\]

The unit of CAIDI is time (minutes). CAIDI can be stated as: “The average customer that experiences an outage on the distribution system is out for ____ minutes.” For example, if Utility X has a CMI of 10 minutes and a CI of 2, then the CAIDI is 5 minutes.

CAIDI measures the average **repair time** experienced by the average customer who experiences an interruption.

SAIFI stands for **System Average Interruption Frequency Index**.

SAIFI is calculated by taking the total number of customer interruptions and dividing it by the total number of customers served.

\[
\text{SAIFI} = \frac{\text{Total number of Customer Interruptions (CI)}}{\text{Total number of customers served (C)}}
\]

The unit of SAIFI is interruptions. SAIFI can be stated: “On the average, customers on the distribution system experienced _____ service interruptions.” For example, if Utility X has 2,000 CI annually, and 1,000 customers, then the SAIFI for that utility is 2 interruptions per year (for the average customer).

SAIFI measures the average **frequency** of interruptions for the average customer.

MAIFI stands for **Momentary Average Interruption event Frequency Index**.

MAIFI is calculated by taking the total number of customer momentary interruption events and dividing it by the number of customers served.

\[
\text{MAIFI} = \frac{\text{Total Number of Customer Momentary Interruption Events (CME)}}{\text{Total Number of Customers Served (C)}}
\]
The unit of MAIFI is “momentary interruptions.” MAIFI can be stated as “On the average, customers on the distribution system experienced _____ momentary interruptions.” For example, if Utility X has 5 CME and 1,000 customers, then the MAIFI is .005.

A momentary event, for FMPA participants, is defined as an interruption that lasts less than one minute. All momentary interruptions associated with the same event are considered to be ONE momentary interruption event. For example, events that result in multiple operations of a re-closer (thus resulting in multiple momentary events) are considered one momentary event. This is true even if the total time for all these momentary events to occur is greater than one minute. MAIFI is similar to SAIFI, where SAIFI tracks the frequency of sustained interruptions, and MAIFI tracks the frequency of momentary interruptions. MAIFI measures the average momentary interruption events per average customer.

L-BAR is the Average length of a service interruption.

L-Bar is calculated by taking the sum of the lengths of each service interruption and dividing by the number of sustained interruptions. Momentary interruptions are not included in the L-Bar calculation.

\[
\text{L-Bar} = \frac{\text{Minutes of Interruption}}{\text{Total number of Interruptions greater than one minute in length}}
\]

The unit of L-Bar is time (minutes). L-Bar can be stated as: “On average, sustained interruptions on the system have duration of ____ minutes.” For example, if Utility X has 1440 minutes of service interruption and 100 interruptions, then their L-Bar is 14.4 minutes.

L-Bar measures the average length of a single outage.
This section provides data collected for the 2008 calendar year and includes comparisons between the Florida Municipal Utilities and the IOUs for years 2007-2008 respectfully.

In order to make a valid comparison, the data from the Florida Municipal was calculated as if all the participants were a part of one utility. For example, the data for number of customers, customer minutes interrupted, total outages, etc. and the indices calculated from this data, are based on the sum of all the participating Florida Municipal (versus averaging). This allows for a more appropriate comparison to the IOU data.

Where possible, we have tried to make valid comparisons and identify possible conclusions for the results. However, due to the nature of some of this data, there are many instances where no definite conclusion can be drawn from the data.

The data has been divided into the following groups:

KEYS 2008 Distribution Reliability Indices
- Comparison of the Florida Municipals to the Investor Owned Utilities
- Minimum and Maximum data points for each index for the Florida Municipals

Comparison of Historical Data (KEYS 2008) Reliability Indices
- Four year comparison of Florida Municipals and Investor Owned Utilities
- Four year comparison of Florida Municipals by Utility Size

Cause of Outages
- Comparison of the Florida Municipals to the Investor Owned Utilities by total number of outages and by percentage
- Florida Municipals cause of outages by month
- Comparison of Florida Municipals (KEYS 2008) cause of outages by percentage
- Florida Municipals – cause of outages – overhead vs underground
TRANSMISSION & DISTRIBUTION
Charts & Graphs

- Transmission Outages vs Year
- Transmission Outages vs Territory
- Transmission Outages vs Holidays
- Transmission Outages vs Month 2008
- Transmission Outages vs Month
- Transmission Outages vs Day of the Week
- Distribution Outages vs Year with 3yr Average
- Re-closure Quality per Year
- Transmission Outages vs Hour of the Day
- Total Transmission Outages vs Cause
- Transmission Outages vs Human Error (KEYS/Contractor)
- Transmission Outages vs System Load
- Distribution Outages vs Year
- Distribution Outages vs Month
- Distribution Outages vs Day of the Week
- Distribution Outages vs Hour of the Day
- Total Distribution Outages vs Cause
- Distribution Outages vs Tree by Month
- Distribution Outages vs Tree by Year
- Distribution Outages vs Equipment Failure by Month
- Distribution Outages vs Equipment Failure by Year
- Percentage of Distribution Outages vs System Load
- Total System Outages vs Day of the Week
- Total System Outages vs Weekends
- Total System Outages vs Cause
- Total System Outages vs Minutes
- Transmission and Distribution Outages qty vs Minutes
- Key West Diesel Substation Feeder Outage History
- Kennedy Dr Substation Feeder Outage History
- US1 Substation Feeder Outage History
- Big Coppitt Substation Feeder Outage History
- Big Pine Substation Feeder Outage History
- Thompson St Substation Feeder Outage History
- White St Substation Feeder Outage History
- Cudjoe Key Substation feeder Outage History
Tie Line Summary Sheet Detail
BIG PINE SUBSTATION FEEDER OUTAGE HISTORY VS YEAR (1991 THRU 2008)

YEAR
0 1 2 3 4 5 6 7 8
91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

TOTAL OUTAGES

BPS 2 BPS 3 BPS4

THOMPSON ST. SUBSTATION FEEDER OUTAGE HISTORY VS. YEAR (1999 THRU 2008)

YEAR
0 1 2 3 4 5 6 7 8
99 00 01 02 03 04 05 06 07 08

NUMBER OF OUTAGES

TSS2 TSS3 TSS4 TSS5
Comparison of KEYS Statistics to Other Utilities

Comparison of the Florida Municipals to the Investor Owned Utilities

As noted previously, the IOUs are required by the PSC to submit their reliability data by March 1st of each year. The data collected from these annual report submittals is presented below. In comparison, the combined data from the participating Fl Municipal is also included. (2008 data for IOU’s was not available).

<table>
<thead>
<tr>
<th>Distribution Reliability Indices</th>
<th>FL Muni</th>
<th>KEYS 2008</th>
<th>FPL</th>
<th>TECO</th>
<th>PEF</th>
<th>Gulf</th>
<th>FPUC</th>
<th>IOU 2007 AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIDI</td>
<td>105.8</td>
<td>56.2</td>
<td>73.2</td>
<td>76.8</td>
<td>78.3</td>
<td>124.8</td>
<td>77.9</td>
<td>86.2</td>
</tr>
<tr>
<td>CAIDI</td>
<td>46.0</td>
<td>64.3</td>
<td>60.3</td>
<td>75.3</td>
<td>69.5</td>
<td>106.1</td>
<td>69.6</td>
<td>76.2</td>
</tr>
<tr>
<td>SAIFI</td>
<td>2.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>MAIFIe</td>
<td>5.4</td>
<td>3.5</td>
<td>11.4</td>
<td>13.9</td>
<td>11.3</td>
<td>6.7</td>
<td>N/A</td>
<td>10.8</td>
</tr>
<tr>
<td>L-Bar</td>
<td>129.2</td>
<td>87.2</td>
<td>211.5</td>
<td>161.5</td>
<td>122.1</td>
<td>131.9</td>
<td>76.6</td>
<td>140.6</td>
</tr>
</tbody>
</table>

Similar to previous years, this data indicates that the FL Municipal had a higher frequency of outages (SAIFI) than the other utilities in the state. However, the duration of those outages for customers who experienced an outage (CAIDI) was shorter than the other utilities. Again, similar to previous years, the Florida Muni group reported a lower frequency of momentary outage events (MAIFI) than the IOUs. However, some of the participating Florida Municipal utilities do not track momentary outages, so the MAIFI number is artificially low.

The following presents this data in graph form:

<table>
<thead>
<tr>
<th>2008 Distribution Reliability Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIDI - Avg Minutes/Interruptions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FL Muni</th>
<th>KEYS 2008</th>
<th>FPL</th>
<th>TECO</th>
<th>PEF</th>
<th>Gulf</th>
<th>FPUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

FL Muni - 2007 Data
FL Muni - 2008 Data
KEYS - 2008 Data
2008 Distribution Reliability Indices
CAIDI - Avg Repair Time/Outage

2008 Distribution Reliability Indices
SAIFI - Avg Frequency of Interruptions

2008 Distribution Reliability Indices
MAIFIe - Avg Momentary Events/Customer
This section presents a comparison of the distribution reliability data collected for calendar years 2003-2005, 2007 and 2008. The data presented includes the Florida Municipal and the IOUs. The KEYS Distribution Reliability Measurement program has grown over the years. It should be noted that the 2003 data represents 8 utilities; the 2004 data represents 9 utilities; the 2005 data represents 15 utilities; and the 2006 data represents 19 utilities.
Comparison of Historical Data for Florida Municipals & Investor Owned Utilities

Florida Utilities - SAIDI 2003 - 2007

Florida Utilities - CAIDI 2003 - 2007

Florida Utilities - SAIFI 2003 - 2007
The table and chart below present the cause of outages by percentage for Florida Utilities.

Total Number of Outages by Percentage for Florida Utilities - 2007

<table>
<thead>
<tr>
<th>CAUSE OF OUTAGE</th>
<th>FL Muni</th>
<th>FPL</th>
<th>TECO</th>
<th>PEF</th>
<th>Gulf</th>
<th>FPUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td>16%</td>
<td>15%</td>
<td>25%</td>
<td>17%</td>
<td>23%</td>
<td>17%</td>
</tr>
<tr>
<td>Vegetation</td>
<td>20%</td>
<td>13%</td>
<td>21%</td>
<td>18%</td>
<td>14%</td>
<td>32%</td>
</tr>
<tr>
<td>Animals</td>
<td>16%</td>
<td>10%</td>
<td>17%</td>
<td>12%</td>
<td>21%</td>
<td>18%</td>
</tr>
<tr>
<td>Foreign Interference</td>
<td>3%</td>
<td>2%</td>
<td>3%</td>
<td>0%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Human Cause</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Undetermined</td>
<td>9%</td>
<td>13%</td>
<td>7%</td>
<td>11%</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>Equipment Failure</td>
<td>24%</td>
<td>35%</td>
<td>25%</td>
<td>34%</td>
<td>26%</td>
<td>17%</td>
</tr>
<tr>
<td>All Other</td>
<td>9%</td>
<td>13%</td>
<td>3%</td>
<td>8%</td>
<td>3%</td>
<td>6%</td>
</tr>
</tbody>
</table>

FL Muni Cause of Outages by Month - 2007

Florida Utilities Cause of Outages by Percentage - 2007
Section -5
System Improvement Reliability Plans

- Reasons for Past Five Year Reliability Improvements:

Transmission System

- Replace 69kv dead-end bell’s with polymer insulators
- Utilized Synchronous Condenser for system stability
- New parallel 138kV Line 9 (Big Coppitt - Stock Island)
- Replaced old relays on T-line at US1, Big Pine, and Big Coppitt
- Repaired 35 pole Foundation problems in FKEC
- Additional 10MVAR capacitor bank at Big Coppitt Sub.
- Replace 138kV Gang Switch at Big Pine Sub & Big Coppitt Sub
- Replaced 30 yr old 69 kV oil breakers
- Replace aging shield wire FKEC
- Replace arrestors at Tavernier Sub
- Replace insulators north of Tavernier
- Replace aging 138kV potential transformer

Distribution System

- Added second transformer at KWD Substation
- Distribution protective relays (replaced with new Microprocessor)
- Added new Cudjoe Key Substation
- Added additional feeder at Big Coppitt Substation
- Tree Trimming program
- Lightning arrestor’s program
- Infrared survey of lines and field correcting/fixing
- Installation of 4 field re-closers
- Installed more Capacitor Banks to improve voltage quality
- Open wire/back easement removal program
- Reduced number of overloaded transformers
- Installed transformer secondary/primary arrestors
- Replacement at Kennedy Drive Sub bus 13.8kV gear
- New 13.8kV substation breaker (replace 30 yrs. old ones)
Reliability Goals/Plans for year 2008 - 2011

Transmission System

- Foundation repairs to over water poles
- Replace 69kV gang switches
- Replace down guy insulator rods
- Replace corroded static brackets and wire
- Repair spalling at pole tops
- Replace 138kV breakers
- Fiber inter-connection
- 69kV Relay upgrade at KDS and SIP
 - Replace Lightning Arresters
 - Auto Re-close On Transmission Lines
- Replace four 69kv breakers at Stock island Plant

Distribution System

- Pole replacement program (Storm Harding Program)
- New substation at Stock Island
- Replace old substation feeder cables
- Replace transformers at KDS & US1
- Additional feeders
- Use Of New OMS (Outage Management System)
Details for Transmission Outages for 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Duration (min)</th>
<th>Location</th>
<th>% Keys Cust</th>
<th>Cause</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9/2008</td>
<td>16:10</td>
<td>5</td>
<td>BPS</td>
<td>100%</td>
<td>Inadvertant trip</td>
<td>KEYS Electrical and Contractor testing BPS 138kv W3 relay</td>
</tr>
<tr>
<td>1/9/2008</td>
<td>17:09</td>
<td>5</td>
<td>BPS</td>
<td>100%</td>
<td>Inadvertant trip</td>
<td>KEYS Electrical and Contractor testing BPS 138kv W3 relay</td>
</tr>
<tr>
<td>1/11/2008</td>
<td>14:42</td>
<td>15</td>
<td>BCS</td>
<td>65%</td>
<td>Inadvertant trip</td>
<td>KEYS Electrical and Contractor testing BCS 138kv W4 relay</td>
</tr>
<tr>
<td>1/11/2008</td>
<td>15:13</td>
<td>17</td>
<td>BCS</td>
<td>10%</td>
<td>Inadvertant trip</td>
<td>KEYS Electrical and Contractor testing BCS 138kv W2 relay</td>
</tr>
<tr>
<td>2/26/2008</td>
<td>13:08</td>
<td>15</td>
<td>FPL Niles Channel</td>
<td>100%</td>
<td>Undetermined</td>
<td>FKEC advised cause was in FPL area, cause unknown.</td>
</tr>
<tr>
<td>4/30/2008</td>
<td>16:54</td>
<td>2</td>
<td>BPS/MAR</td>
<td>100%</td>
<td>Undetermined</td>
<td>BPS 138kv W2 and MAR W8, W9 tripped. Fault Locate at MM20</td>
</tr>
<tr>
<td>5/19/2008</td>
<td>17:24</td>
<td>8</td>
<td>US1 SUB</td>
<td>75%</td>
<td>Trans Breaker Failure</td>
<td>US1 69kv W2 Failed causing separation at US1 Substation.</td>
</tr>
<tr>
<td>5/24/2008</td>
<td>15:45</td>
<td>6</td>
<td>TAV SUB</td>
<td>100%</td>
<td>Undetermined</td>
<td>Extremely bad weather in the FKEC area.</td>
</tr>
<tr>
<td>6/17/2008</td>
<td>16:59</td>
<td>32</td>
<td>BCS</td>
<td>90%</td>
<td>Relay</td>
<td>Relay Setting problem</td>
</tr>
<tr>
<td>8/10/2008</td>
<td>19:36</td>
<td>8</td>
<td>MAR SUB</td>
<td>100%</td>
<td>Undetermined</td>
<td>Extremely bad weather in the FKEC area.</td>
</tr>
<tr>
<td>9/11/2008</td>
<td>12:39</td>
<td>13</td>
<td>KDS</td>
<td>50%</td>
<td>Undetermined</td>
<td>B0 fault on 69kv W3. Note: 69kv Line 8 out of service for PM</td>
</tr>
<tr>
<td>10/2/2008</td>
<td>14:21</td>
<td>8</td>
<td>KDS</td>
<td>50%</td>
<td>Undetermined</td>
<td>Line 1 distance relay operated on phase to ground fault</td>
</tr>
<tr>
<td>10/2/2008</td>
<td>18:26</td>
<td>204</td>
<td>KDS</td>
<td>30%</td>
<td>69kv line 1</td>
<td>69kv Line 1 fell into the water behind Banana Bay resort.</td>
</tr>
<tr>
<td>10/31/2008</td>
<td>14:37</td>
<td>31</td>
<td>KDS</td>
<td>45%</td>
<td>Sudden pressure relay</td>
<td>Faulty Relay tripped KDS 69kv W-1 and W-5</td>
</tr>
<tr>
<td>11/1/2008</td>
<td>11:49</td>
<td>18</td>
<td>KDS</td>
<td>45%</td>
<td>Sudden pressure relay</td>
<td>Faulty Relay tripped KDS 69kv W-1 and W-5</td>
</tr>
</tbody>
</table>
Rule 25-6.044 Florida Administrative Code

25-6.044 Continuity of Service.

25-6.044 Continuity of Service.
(1) Definitions applicable to this part:
(a) "Area of Service." A geographic area where a utility provides retail electric service. An Area of Service can be the entire system, a district, or a subregion of the utility’s system in which centralized distribution service functions are carried out.
(b) "Average Duration of Outage Events (L-Bar).” The sum of each Outage Event Duration for all Outage Events occurring during a given time period, divided by the Number of Outage Events over the same time period within a specific Area of Service.
(c) “Customer Average Interruption Duration Index (CAIDI).” The average time to restore service to interrupted retail customers within a specified Area of Service over a given period of time. It is determined by dividing the sum of Customer Minutes of Interruption by the total number of Service Interruptions for the respective Area of Service.
(d) “Customers Experiencing More Than Five Interruptions (CEMI5).” The number of retail customers that sustain more than five Service Interruptions for a specified Area of Service over a given period of time.
(e) “Customer Minutes of Interruption (CMI).” For a given Outage Event, CMI is the sum of each affected retail customer’s Service Interruption Duration.
(f) “Momentary Average Interruption Event Frequency Index (MAIFIe).” The average number of Momentary Interruption Events recorded on primary circuits for a specified Area of Service over a given period of time.
(g) “Momentary Interruption.” The complete loss of voltage for less than one minute. This does not include short duration phenomena causing waveform distortion.
(h) "Momentary Interruption Event.” One or more Momentary Interruptions recorded by the operation of a utility distribution interrupting device within a five minute period. For example, two or three operations of a primary circuit breaker within a five minute period that did not result in a Service Interruption is one Momentary Interruption Event.
(i) "Number of Customers Served (C).” The sum of all retail customers on the last day of a given time period within a specific Area of Service.
(j) "Number of Outage Events (N).” The sum of Outage Events for an Area of Service over a specified period of time.
(k) “Outage Event.” An occurrence that results in one or more individual retail customer Service Interruptions.
(l) “Outage Event Duration (L).” The time interval, in minutes, between the time when a utility first becomes aware of an Outage Event and the time of restoration of service to the last retail customer affected by that Outage Event.
(m) “Service Interruption.” The complete loss of voltage of at least one minute to a retail customer.
(n) “Service Interruption Duration.” The time interval, in minutes, between the time a utility first becomes aware of a Service Interruption and the time of restoration of service to that retail customer.
(o) “System Average Interruption Duration Index (SAIDI).” The average minutes of Service Interruption Duration per retail customer served within a specified Area of Service over a given period of time. It is determined by dividing the total Customer Minutes of Interruption by the total Number of Customers Served for the respective Area of Service.

(p) “System Average Interruption Frequency Index (SAIFI).” The average number of Service Interruptions per retail customer within a specified Area of Service over a given period of time. It is determined by dividing the sum of Service Interruptions by the total Number of Customers Served for the respective Area of Service.

(q) “Planned Service Interruption.” A Service Interruption initiated by the utility to perform necessary scheduled activities, such as maintenance, infrastructure improvements, and new construction due to customer growth.

(2) Each utility shall keep a record of its system reliability and continuity of service data, customers’ Service Interruption notifications, and other data necessary for the annual reports filed under these rules. These records and data shall be retained for a minimum of ten years from the filing of each annual report. The utility shall record each Outage Event as planned or unplanned and shall identify the point of origination such as generation facility, transmission line, transmission substation equipment, or distribution equipment. The cause of each Outage Event shall be determined and recorded in a standardized manner throughout the utility. The date and time of the Outage Event and the number of Service Interruptions for the Outage Event shall also be recorded.

(3) Each utility shall make all reasonable efforts to prevent interruptions of service and when such interruptions occur shall attempt to restore service within the shortest time practicable consistent with safety.

(4) When the service is necessarily interrupted or curtailed, it shall be done at a time which, when at all practicable, will result in the least inconvenience to customers and all such scheduled interruptions shall be preceded by reasonable notice whenever practicable to affected customers. Each utility shall maintain a current copy of its noticing procedures with the Division of Economic Regulation.

(5) The provisions of this rule shall not apply to a curtailment or an interruption of service to customers receiving service under interruptible rate classifications when the curtailment or interruption of service occurs pursuant to the affected retail customer’s service agreement.

Specific Authority 366.05(1) FS. Law Implemented 366.03, 366.04(2)(c), (5), 366.05 FS. History–New 7-29-69, Formerly 25-6.44, Amended 2-25-93, 11-7-02, 8-17-06.
Rule 25-6.0455 Florida Administrative Code

(1) Each utility shall file a Distribution Service Reliability Report with the Director of the Commission’s Division of Economic Regulation on or before March 1 of each year, for the preceding calendar year.

(2) The Distribution Service Reliability Report will exclude the impact of all service interruptions associated with generation and transmission disturbances governed by subsections 25-6.018(2) and (3), F.A.C.

(3) The report shall contain the following information on an actual and adjusted basis:

(a) The utility’s total number of Outage Events (N), categorized by cause for the highest ten causes of Outage Events, the Average Duration of Outage Events (L-Bar), and Average Service Restoration Time (CAIDI). The utility shall record these data and analyses on Form PSC/ECR 102-1(a) (8/06) and Form PSC/ECR 102-1(b) (8/06), entitled “Causes of Outage Events – Actual” and “Causes of Outage Events – Adjusted”, respectively, which may be obtained from the Division of Economic Regulation, 2540 Shumard Oak Boulevard, Tallahassee, Florida 32399-0850, (850)413-6900, and which are incorporated herein by reference;

(b) Identification of the three percent of the utility’s Primary Circuits (feeders) with the highest number of feeder breaker interruptions. For each primary circuit so identified the utility shall report the primary circuit identification number or name, substation origin, general location, number of affected customers by service class served, Number of Outage Events (N), Average Duration of Outage Events (L-Bar), Average Service Restoration Time (CAIDI), whether the same circuit is being reported for the second consecutive year, the number of years the primary circuit was reported on the “Three Percent Feeder List” in the past five years, and the corrective action date of completion. The utility shall record these data and analyses on Form PSC/ECR 102-2(a) (8/06) and Form PSC/ECR 102-2(b) (8/06), entitled “Three Percent Feeder List – Actual” and “Three Percent Feeder List – Adjusted”, respectively, which may be obtained from the Division of Economic Regulation, 2540 Shumard Oak Boulevard, Tallahassee, Florida 32399-0850, (850)413-6900, and which are incorporated herein by reference;

(c) The reliability indices SAIDI, CAIDI, SAIFI, MAIFIe, and CEMI5 for its system and for each district or region into which its system may be divided. The utility shall report these data and analyses on Form PSC/ECR 102-3(a) (8/06) and Form PSC/ECR 102-3(b) (8/06), entitled “System Reliability Indices – Annual” and “System Reliability Indices – Adjusted”, respectively, which may be obtained from the Division of Economic Regulation, 2540 Shumard Oak Boulevard, Tallahassee, Florida 32399-0850, (850)413-6900, and which are incorporated herein by reference. Any utility furnishing electric service to fewer than 50,000 retail customers shall not be required to report the reliability indices MAIFIe or CEMI5; and

(d) The calculations for each of the required indices and measures of distribution reliability.

(4) Adjusted distribution reliability data may omit Outage Events directly caused by:

(a) Planned Service Interruptions;
(b) A storm named by the National Hurricane Center;
(c) A tornado recorded by the National Weather Service;
(d) Ice on lines;
(e) A planned load management event;
(f) Any electric generation or transmission event not governed by subsections 25-6.018(2) and (3), F.A.C.; or
(g) An extreme weather or fire event causing activation of the county emergency operation center.

Specific Authority 366.05(1) FS. Law Implemented 366.03, 366.04(2)(c), (f), (5), 366.05, 366.05(7) FS. History—New 2-25-93, Amended 11-7-02, 8-17-06.
OMS -- Outage Classification Codes

<table>
<thead>
<tr>
<th>Territory - Initiated</th>
<th>Initial Cause Class</th>
<th>Outage Type</th>
<th>Outage Class</th>
<th>Cause Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- KEYS area</td>
<td>1- Distribution</td>
<td>1- Reclosure</td>
<td>1- Overhead</td>
<td>1- Undervoltage operation</td>
</tr>
<tr>
<td>2- FKEC area</td>
<td>2- Transmission</td>
<td>2- Outage - Transmission</td>
<td>2- Underground</td>
<td>2- Underfrequency operation</td>
</tr>
<tr>
<td>3- FPL area</td>
<td>3- Generation</td>
<td>3- Outage - Feeder</td>
<td>3- Planned outage</td>
<td>3- Equip Failure- Arrestor(LA)</td>
</tr>
<tr>
<td>4- STATE area</td>
<td>4- Synchr Condenser</td>
<td>4- Outage - Lateral</td>
<td>4- Equip Failure- Wire splice</td>
<td></td>
</tr>
<tr>
<td>5- Major Storms/Hurricane</td>
<td>5- Substation</td>
<td>5- Outage - Transformer</td>
<td>5- Equip Failure- Insulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6- Capacitor bank-Trans.</td>
<td>6- Outage - Service wire</td>
<td>6- Equip Failure- Switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7- Equip Failure- Breaker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8- Equip Failure- Capacitor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9- Equip Failure- Pole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10- Equip Failure- Xformer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11- Equip Failure- Relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12- Equip Failure- Crossarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13- Empl Error- Switching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14- Emp Error- Linework(KEYS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15- Emp Error- Linework(contr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16- Emp Error- Substation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17- Weather- Lightning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18- Weather- Trees Blown into</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19- Weather- Xarm/pole Fire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20- Weather- Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21- Animal-Bird</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22- Animal-Iguana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23- Animal-Snake</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24- Animal-Debris from animal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25- Overload-Transformer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26- Overload-Conductor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27- Overload-Fuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28- Vehicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29- Boat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30- Airplane/ParaSailor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31- Vegetation (not weather)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32- Fire- (ie. house, trees)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33- Customer caused</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34- Outside Contractor-not KEYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35- UG cable “Dig in”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36- Vandalism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37- Undetermined-Not confirmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38- Undetermined-maybe weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39- All other(not identified above)</td>
</tr>
</tbody>
</table>